Package: list 9.2.6

Graeme Blair

list: Statistical Methods for the Item Count Technique and List Experiment

Allows researchers to conduct multivariate statistical analyses of survey data with list experiments. This survey methodology is also known as the item count technique or the unmatched count technique and is an alternative to the commonly used randomized response method. The package implements the methods developed by Imai (2011) <doi:10.1198/jasa.2011.ap10415>, Blair and Imai (2012) <doi:10.1093/pan/mpr048>, Blair, Imai, and Lyall (2013) <doi:10.1111/ajps.12086>, Imai, Park, and Greene (2014) <doi:10.1093/pan/mpu017>, Aronow, Coppock, Crawford, and Green (2015) <doi:10.1093/jssam/smu023>, Chou, Imai, and Rosenfeld (2017) <doi:10.1177/0049124117729711>, and Blair, Chou, and Imai (2018) <https://imai.fas.harvard.edu/research/files/listerror.pdf>. This includes a Bayesian MCMC implementation of regression for the standard and multiple sensitive item list experiment designs and a random effects setup, a Bayesian MCMC hierarchical regression model with up to three hierarchical groups, the combined list experiment and endorsement experiment regression model, a joint model of the list experiment that enables the analysis of the list experiment as a predictor in outcome regression models, a method for combining list experiments with direct questions, and methods for diagnosing and adjusting for response error. In addition, the package implements the statistical test that is designed to detect certain failures of list experiments, and a placebo test for the list experiment using data from direct questions.

Authors:Graeme Blair [aut, cre], Winston Chou [aut], Kosuke Imai [aut], Bethany Park [ctb], Alexander Coppock [ctb]

list_9.2.6.tar.gz
list_9.2.6.zip(r-4.5)list_9.2.6.zip(r-4.4)list_9.2.6.zip(r-4.3)
list_9.2.6.tgz(r-4.4-x86_64)list_9.2.6.tgz(r-4.4-arm64)list_9.2.6.tgz(r-4.3-x86_64)list_9.2.6.tgz(r-4.3-arm64)
list_9.2.6.tar.gz(r-4.5-noble)list_9.2.6.tar.gz(r-4.4-noble)
list_9.2.6.tgz(r-4.4-emscripten)list_9.2.6.tgz(r-4.3-emscripten)
list.pdf |list.html
list/json (API)

# Install 'list' in R:
install.packages('list', repos = c('https://sensitivequestions.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sensitivequestions/list/issues

Uses libs:
  • openblas– Optimized BLAS
Datasets:
  • affirm - The 1991 National Race and Politics Survey
  • combinedListExps - Five List Experiments with Direct Questions
  • mexico - The 2012 Mexico Elections Panel Study
  • mis - The 1994 Multi-Investigator Survey
  • multi - The 1991 National Race and Politics Survey
  • race - The 1991 National Race and Politics Survey

On CRAN:

6.89 score 7 stars 183 scripts 632 downloads 1 mentions 10 exports 21 dependencies

Last updated 10 months agofrom:e088e5f88a. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-win-x86_64OKNov 01 2024
R-4.5-linux-x86_64OKNov 01 2024
R-4.4-win-x86_64OKNov 01 2024
R-4.4-mac-x86_64OKNov 01 2024
R-4.4-mac-aarch64OKNov 01 2024
R-4.3-win-x86_64OKNov 01 2024
R-4.3-mac-x86_64OKNov 01 2024
R-4.3-mac-aarch64OKNov 01 2024

Exports:combinedListDirectcomp.listEndorseict.hausman.testict.testictregictreg.jointictregBayesictregBayesHierpredict.ictregpredict.ictreg.joint

Dependencies:abindarmbootcodacorpcorgamlss.distlatticelme4magicMASSMatrixminqamvtnormnlmenloptrquadprogRcppRcppEigensandwichVGAMzoo

Combining List Experiments with Direct Questions using combinedListDirect()

Rendered fromcombined-list.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2015-05-12
Started: 2015-05-11