Package: endorse 1.6.2

Yuki Shiraito

endorse: Bayesian Measurement Models for Analyzing Endorsement Experiments

Fit the hierarchical and non-hierarchical Bayesian measurement models proposed by Bullock, Imai, and Shapiro (2011) <doi:10.1093/pan/mpr031> to analyze endorsement experiments. Endorsement experiments are a survey methodology for eliciting truthful responses to sensitive questions. This methodology is helpful when measuring support for socially sensitive political actors such as militant groups. The model is fitted with a Markov chain Monte Carlo algorithm and produces the output containing draws from the posterior distribution.

Authors:Yuki Shiraito [aut, cre], Kosuke Imai [aut], Bryn Rosenfeld [ctb]

endorse_1.6.2.tar.gz
endorse_1.6.2.zip(r-4.5)endorse_1.6.2.zip(r-4.4)endorse_1.6.2.zip(r-4.3)
endorse_1.6.2.tgz(r-4.4-x86_64)endorse_1.6.2.tgz(r-4.4-arm64)endorse_1.6.2.tgz(r-4.3-x86_64)endorse_1.6.2.tgz(r-4.3-arm64)
endorse_1.6.2.tar.gz(r-4.5-noble)endorse_1.6.2.tar.gz(r-4.4-noble)
endorse_1.6.2.tgz(r-4.4-emscripten)endorse_1.6.2.tgz(r-4.3-emscripten)
endorse.pdf |endorse.html
endorse/json (API)

# Install 'endorse' in R:
install.packages('endorse', repos = c('https://sensitivequestions.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sensitivequestions/endorse/issues

Uses libs:
  • openblas– Optimized BLAS
Datasets:
  • pakistan - Pakistan Survey Experiment on Support for Militant Groups

On CRAN:

3.78 score 3 stars 3 scripts 275 downloads 5 exports 2 dependencies

Last updated 3 years agofrom:6ce3bd0749. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-win-x86_64OKNov 13 2024
R-4.5-linux-x86_64OKNov 13 2024
R-4.4-win-x86_64OKNov 13 2024
R-4.4-mac-x86_64OKNov 13 2024
R-4.4-mac-aarch64OKNov 13 2024
R-4.3-win-x86_64OKNov 13 2024
R-4.3-mac-x86_64OKNov 13 2024
R-4.3-mac-aarch64OKNov 13 2024

Exports:endorseendorse.plotGeoCountGeoIdpredict.endorse

Dependencies:codalattice